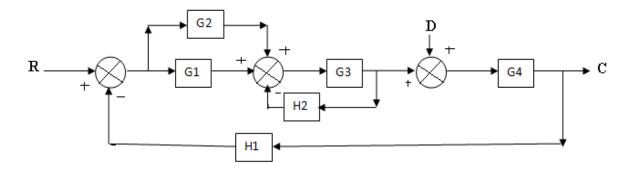
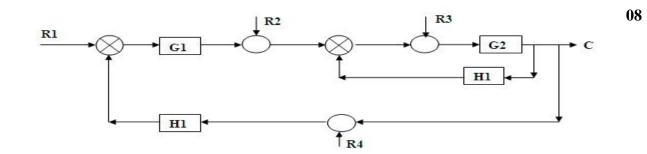
SHRI SANT GADGE BABA COLLEGE OF ENGINEERING & TECHNOLOGY, BHUSAWAL.

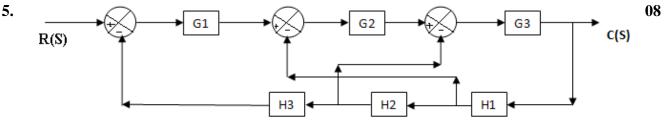

Pre University Test Subject: - Feedback Control System <u>QUESTION BANK</u>

Session-2015-16

08

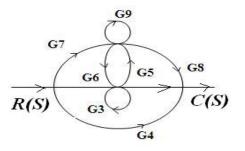

UNIT-I

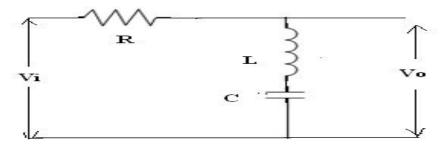
- 1. Discuss in detail the difference between open loop & closed loop control systems with **08** example of each. Also explain the importance of transfer function
- 2. Find C from block diagram shown below



Class: - T.E

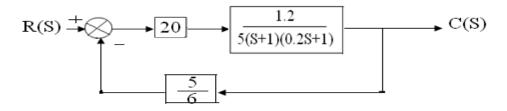
Find the gain using BDR


4. Explain the effect of disturbance of signals and reduction of parameters variations by use of **08** feedback.

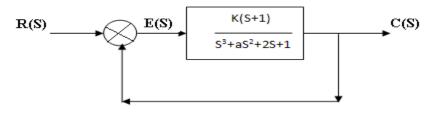

Find the transfer function of the above system using block diagram reduction technique

6. Find SFG 08

[FCS Question Bank]



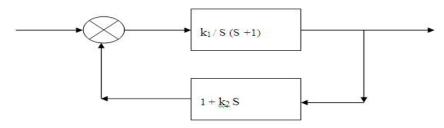
8. i) Find SFG of below network



ii) Enlist the different types of systems? Explain any one of it in detail **UNIT-II**

- 1. State and explain Routh Criterian. Write in detail as special cases of Routh's Criterian. **08**
- 2. The block diagram of a simple servo system is shown in the figure. Calculate all time **08** domain specifications and hence obtain the equation for time response for a unit step i/p.

- **3.** Explain in detail role of ζ (zeta) in Second order System.
- 4. A system oscillates with frequency ω , if it has poles at S=+ j ω and no poles in the right half **08** s-plane. Determine values of K and a, so that the system shown below oscillates at a frequency 2 rad/sec


5. Derive the equation for unit step response of a second order system for which damping factor is less that 1.

08

08

04

- 6. Find the restriction on K so that the system having T.F. given below is absolutely stable G(s) = K/S (1+0.5 S)(1+0.1 S) and H(s) = Unity
- For the system shown in figure determine values of k₁ and velocity feedback constant k₂
 So that the maximum overshoot in the unit step response is 0.2 and peak time is 1 Sec. Also obtain time and settling time with these values of k₁ and k₂

8. A second order system is given by $C(s)/R(s) = 25/S^2+6S+25$ find its rise time, peak time, peak overshoot and settling time if subjected to unit step input. Also calculate expression for its response.

UNIT-III

08

$$GH(s) = K(S+5) / S(S+2)$$

2.	Draw the complete root locus of a system having G(s) H(s) = [K/S(S+1)(S+2)(S+3)] And find the range of K for stability	08
3.	i) Give different steps to design a lag compensator using root locus.ii) Discuss the effect of addition of poles and zeros on the stability in root locus	08
4.	Draw the complete root locus of a system having G(s) H(s) = [K/S(S+1)(S+2)(S+3)] And find the range of K for stability	08
5.	Draw the Root locus for GH(s) = K / S (S+3) (S+6) Obtain the value of K when ζ (zeta)=0.6 from the locus	08
6.	 i) Find angle of departure for GH(s)= K / S (S+5) (S² + 6S+64) ii) Write steps to solve Root locus 	04 04
7.	Explain the effect of addition of open loop poles and zeros on the root locus. State the advantages of root locus and define root counter. UNIT-IV	08
1.	For a certain control system G(S) H(S) = [K/S(S+2) (S+10)]	08

- Sketch the Nyquist plot and hence calculate the range of K for stability
- 2. GH(s) = K / S (S+1) (S+10)Determine value of K so that i) GM=12 db and ii) PM = 30 08

[FCS Question Bank]

1.

Draw the Root locus for

3.	Sketch the asymptotic Bode plot for the system having open loop transfer function given as $[2(S+0.25)/S^2(S+1)(S+0.5)]$ Find the value of GM and PM. Hence decide about stability	08	
4.	Sketch Nyquist Plot for the system $GH(S) = K(S+10)^2 / S^3$ Show that the feedback system is stable for K > 5 Determine the gain margin when K=7	08	
5.	Explain the concept of Nyquist plot. Also discuss which steps are adopted to sketch the Nyquist plot.	08	
6.	A system has a open loop transfer function with poles located at 0,-4 and -10 and zero located at -2 with gain K. Draw the bode plot and find the value of K such a that phase margin is 30°	08	
7.	Construct the asymptotic plot for the open loop T.F. G(S) H(S) = [30/S (1+0.5S) (0.08S)] Determine gain margin, phase margin and closed loop stability	08	
8.	i) Sketch roughly polar plot for 1/S, 1/(S+6)(S+2) ii) Give conditions for stability for Bode plot, Nyquist Plot and Polar plot	04 04	
UNIT-V			
1.	Explain PID type of controller and discuss its effect in the system.	08	
2.	For a single input single output control system overall transfer function is given by $T(S) = [S^2+4S+4/S^3+5S^2+4S]$ Represent the state model in canonical form, draw the state diagram and find matrices A, B, and C	08	
3.	Explain Controllability and observability	08	
4.	i) Discuss in brief properties of state transition matrixii) Write a short notes on PI type of controller and discuss its effect in the system	08	
5.	Write Short Note on i) Stepper Motor ii) Servo	08	
6.	Give difference between PI & PD controller	08	