## SHRI SANT GADGE BABA COLLEGE OF ENGINEERING \& TECHONOLOGY, BHUSAWAL

## Department of Electronics \& Communication Engineering.

## B.E E\&C -Division (A)

## Assignment 1:

1) If $A \& B$ are two unsigned variables, with $A=1001$ and $B=1111$, find the values of following expressions.
i. (A and B)
ii. $\left(A^{\wedge} B\right)$
iii. !(B)
iv. As/r3
v. (A\&\&B)
2) Compare between VHDL and Verilog.
3) Write a VHDL description for a Full adder using behavioral and Structural style of modeling.
4) Write the data flow description and derive a minimized Boolean function of the system that has three 1 -bit inputs $\mathrm{a}(2) \mathrm{a}(1) \mathrm{a}(0)$ and one 1 - bit output Y the least significant bit is $\mathrm{a}(0)$, y is ' 1 ' only when $(a(2) a(1) a(0))=(1,3,4,5,7)$ other wise $Y$ is ' 0 '.
5) Draw flow chart, logic symbol for $2: 1$ mux. Write behavioural description using IF_ELSE statement.

## Assignment 2:

1) Derive a minimized Boolean expression for multiplication of $a \times b$ where $a$ and $b$ are 2 bit nos. Write a VHDL code for the same using dataflow description.
2) Write a VHDL code for description of a 4 bit binary counter using behavioral statement. The counter uses synchronous active high clear signal.
3) Find programming errors and write correct statements. (10)
i. Process (2), where Z is output.
ii. $\mathrm{Y}<=\mathrm{Y} * \mathrm{i}$,
iii. $\mathrm{Z}:=\mathrm{Y}$ * i.
iv. Process (N)
begin
variable Y , i : natural.
v. While ( $\mathrm{i}<\mathrm{N}$ ) loop
$\mathrm{i}:=\mathrm{i}+1$;
$\mathrm{Y}:=\mathrm{Y}$ * i ;
end;
4) Design \& write VHDL code for D latch
5) Write a VHDL code for 3 bit down counter with active low synchronous clear in behavioral style of description.

## Assignment 3:

1) Design a 3 bit synchronous counter using JK flip flop and write the structural description.
2) Derive the switch level logic for NOR with truth table and write switch level description.
3) Write a switch level description for a 2 input CMOS NAND gate.
4) Draw and explain Xilinx Spartan 4000 series FPGA architecture.
5) Draw and explain architecture of Xilinx 9500 CPLD series.
